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Automata Theory Based on Quantum Logic. (I)

Mingsheng Ying1
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We present a basic framework of automata theory based on quantum logic. In
particular, we introduce the orthomodular lattice-valued (quantum) predicate of
recognizability and establish some of its fundamental properties.

1. INTRODUCTION

It is well known that almost all mathematical theories such as group
theory and topology are based on classical (Boolean) logic and intuitionistic
mathematics is built on intuitionistic logic. One may naturally conceive of
the problem whether we are able to establish some mathematical theories
based on other nonclassical logics besides intuitionistic logic. Indeed, as early
as 1952, Rosser and Turquette [RT52] proposed the following problem: if
there are many-valued theories beyond the level of predicate calculus, then
what are the details of such theories? This problem was thought of by them
as one of the major unsolved problems in many-valued logics. Recently, an
attempt has been made by the author in [Y91–93, Y93] to give a partial and
elementary answer in the case of point-set topology to the question raised
above. I used a semantical analysis method to develop topology based on
residuated lattice-valued logic, especially continuous-valued logic, and initi-
ated a new approach to topology in fuzzy set theory.

Similarly, various models of computations are investigated in the frame-
work of classical logic; more explicitly, all properties of these models of
computations are deduced by classical logic as their (meta)logical tool. Then
we may also ask what are the similarities and differences between the proper-
ties of the models of computations in classical logic and the corresponding
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ones in nonclassical logics. There has been a very big population of nonclassi-
cal logics; of course it is unnecessary to construct models of computations
in each nonclassical logic and compare them with the ones in classical logic
because some nonclassical logics are completely irrelevant to the behavior of
computations. Nevertheless, as will be explained shortly, it is worth studying
deeply and systematically models of computations based on quantum logic.

Quantum logic was introduced by Birkhoff and von Neumann [BN36]
in the thirties as the logic of quantum mechanics. The starting point of
quantum logic is von Neumann’s Hilbert space formalism of quantum
mechanics; closed subspaces of a Hilbert space are identified with proposi-
tions concerning a quantum mechanical system and their suitable lattice
operations are treated as connectives, and this leads directly to an orthomodu-
lar lattice. Nowadays, what is usually called quantum logic in the mathematical
physics literature is not truly logic, but quite often refers to the theory of
orthomodular lattices. There is also another, much more ‘logical’ point of
view on quantum logic in which quantum logic is seen as a logic whose
truth values range over an orthomodular lattice; for an excellent exposition
of the latter treatment of quantum logic, see Dalla Chiara [DC86]. It might
have seemed that both points of view on quantum logic have no obvious
links to computations, but the appearance of the idea of quantum computers
changed this situation dramatically.

Quantum computers were first envisaged by Feynman [F82, F86] and
elaborated and formalized by Deutsch in [D85]. In particular, Deutsch [D85]
proposed that quantum computers might be able to perform certain types of
computations that classical computers can only perform very inefficiently.
One of the most striking advances was made by Shor [S94], who discovered
a polynomial-time algorithm on quantum computers for prime factorization
which is a central problem in computer science and of which the best known
algorithm on classical computers is exponential. Since then quantum computa-
tion has been an extremely exciting and rapidly growing field of research.
While models of classical computers were developed based on Boolean logic,
Vedral and Plenio [VP98] advocated that quantum computers require quantum
logic, something fundamentally different from classical Boolean logic. As
mentioned above, quantum logic has existed for a long time, and the issue is
how to apply quantum logic in the analysis and design of quantum computers.

Automata are simple theoretical models of computers. The existing
theory of automata is built upon Boolean logic, and so it might not be suitable
for quantum computers that obey logical laws different from that in Boolean
logic. The purpose of this paper and its continuations is to establish a theory
of automata based on quantum logic, with the hope that the results gained
in our approach may offer new insights into quantum computation. Our main
technique is the so-called semantical analysis method, which was first adopted
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in the author’s previous works [Y91, Y92a,b, Y91–93, Y93, Y94] and which,
roughly speaking, transforms the intended conclusion (usually represented
as an implication formula) into an inequality in the lattice of truth values
and then proves this inequality in an algebraic way.

2. SEMANTICS OF QUANTUM LOGIC

This section is a preliminary one in which we recall some basic notions
and results and to fix notations on the semantic aspect of quantum logic; for
more details, we refer to [DC86]. In this paper, quantum logic is understood
as a complete orthomodular lattice-valued logic. A complete orthomodular
is a 7-tuple l 5 ^L, #, ∧, ∨, ', 0, 1&, where:

(1) ^L, #, ∧, ∨, 0, 1& is a complete lattice, 0 and 1 are the least and
greatest elements of L, respectively, # is the partial ordering in L, and for
any M # L, ∧M and ∨M stand for the greatest lower bound and the least
upper bound of M, respectively.

(2) ' is a unary operation on L, called orthocomplement, and required
to satisfy the following conditions:

(2.1) a ∧ a' 5 0, a ∨ a' 5 1.
(2.2) a'' 5 a.
(2.3) a # b implies b' # a'.
(2.4) a ∧ (a' ∨ (a ∧ b)) # b.

To make a complete orthomodular lattice available as the set of truth
values of a logic, we need to define a binary operation, called an implication
operator, on it such that this operation may serve as the interpretation of
implication in this logic. Unfortunately, all implication operators that one can
reasonably introduce in an orthomodular lattice are more or less anomalous in
the sense that they do not share most of the fundamental properties of the
implication in classical logic. One relatively reasonable implication operator
among them is the Sasaki arrow:

a → b 5
def

a' ∨ (a ∧ b) for any a, b P L

which enjoys, among others, the following useful property:

(3) a # b iff a → b 5 1.

For a detailed discussion of the Sasaki arrow, see Román and Rumbos
[RR91] and Román and Zuazua [RZ99]. We finally define the bi-implication
operator on l as follows:
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a } b 5
def

(a → b) ∧ (b → a) for any a, b P L

Given a complete orthomodular lattice l 5 ^L, #, ∧, ∨, ', 0, 1&. An
l-valued (quantum) logic possesses a nullary connective a for each a P L as
well as two primitive connectives, one unary connective ¬ (negation) and
one binary connective ∧ (conjunction), and a primitive quantifier ∀ (universal
quantifier). Beside logical language, in the sequel we will also need some
notations such as P (membership) from set-theoretic language. An l-valued
interpretation is an interpretation in which every predicate symbol is associ-
ated with a mapping from the universe of discourse into L, i.e., an l-valued
relation, and the others are interpreted as usual; for every (well-formed)
formula w, its truth value w P L, and the truth valuation rules for logical
and set-theoretic formulas are given as follows:

(i) a 5 a.
(ii) ¬w 5 w'.
(iii) w ∧ c 5 w ∧ c.
(iv) if U is the universe of discourse, then (∀x)w(x) 5 ∧uPUw(u).
(v) x P A 5 A(x).

Here A is a set constant (unary predicate symbol) and it is interpreted as a
mapping, also denoted as A, from the universe into L, i.e., an l-valued set
(more exactly, an l-valued subset of the universe). Note that in the above
truth valuation rules ∧ and ∨ on the left-hand side are connectives in quantum
logic, whereas ∧ and ∨ on the right-hand side stand for operations in the
orthomodular lattice l of truth values.

To simplify the notations in what follows, it is necessary to introduce
several derived formulas:

(v) w ∨ c 5
def ¬(¬ w ∧ ¬ c).

(vi) w → c 5
def ¬w ∨ (w ∧ c).

(vii) w } c 5
def

(w → c) ∧ (c → w).
(viii) (∃x)w 5

def ¬(∀x)¬w.
(ix) A # B 5

def
(∀x)(x P A → x P B).

(x) A [ B 5
def

(A # B) ∧ (B # A).

As we claimed in the introduction, quantum logic will act as our meta-
logic in the theory of automata developed in this paper. Then we still have
to introduce several metalogical notions for quantum logic. For every ortho-
modular lattice l 5 ^L, #, ∧, ∨, ', 0, 1&, if G is a set of formulas and w a
formula, then w is a semantic consequence of G in l-valued logic, written
G |5

l
w, whenever ∧cPG c # w for all l-valued interpretations. In particular,

|5
l
w means that f |5

l
w, i.e., w 5 1 always holds for every l-valued inter-
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pretation; in other words, 1 is the unique designated truth value in l. Further-
more, if G |5

l
w (resp. |5

l
w) for all orthomodular lattice l, then we say that w

is a semantic consequence of G (resp. w is valid) in quantum logic and write
G |5 w (resp. |5w).

3. RECOGNIZABILITY

We first recall some basic notions in classical automata theory. Let (
be a finite alphabet whose elements are called labels. Then an automaton
over ( is a quadruple R 5 ^Q, I, T, E& in which:

(i) Q is a finite set whose elements are called states.
(ii) I # Q and states in I are said to be initial.
(iii) T # Q and states in T are said to be terminal.
(iv) E # Q 3 ( 3 E, and each ( p, s, q) P E is called a transition in

(or an edge of) R and it means that input s makes state p becomes q.

A path in R is a finite sequence of the form c 5 q0s1q1 . . . qk21skqk

such that (qi , si11, qi11) P E for each i , k. In this case, the sequence s1

. . . sk is called the label of c. A path c 5 q0s1q1 . . . qk21skqk is said to be
successful if q0 P I and qk P T. The behavior of an automaton R is the set
of labels of all successful paths in R. Let A # (* 5 ø`

n50 (n. Then A is
recognizable if there is an automaton R over ( such that A is the behavior
of R.

Let l 5 ^L, #, ∧, ∨, ', 0, 1& be an orthomodular lattice, and let ( be
a finite alphabet. Then an l-valued (quantum) automaton over ( is a quadruple
R 5 ^Q, I, T, d& where Q, I, and T are as in a (classical) automaton and d
is an l-valued subset of Q 3 ( 3 Q [l-valued (ternary) predicate on Q, (
and Q], i.e., a mapping from Q 3 ( 3 Q into L, and called the l-valued
(quantum) transition relation of R; and intuitively, d( p, s, q) stands for the
truth value (in quantum logic) of the proposition that input s causes state p
to become q.

We write A((, l) for the (proper) class of all l-valued automata over (.
Before defining the concept of recognizability for l-valued automata,

we need to introduce some auxiliary notions and notations. We set

T(Q, () 5 (Q 3 ()* 3 Q 5 ø
`

n50
[(Q 3 ()n 3 Q]

i.e., the set of all alternative sequences of states and labels beginning at a
state and also ending at a state. For any c 5 q0s1q1 . . . qk21skqk P T(Q, (),
k is the length of c and denoted by .c., q0 is the beginning of c and denoted
by b(c), qk is the end of c and denoted by e(c), and sequence s 5 s1 . . . sk

is called the label of c and denoted by lb(c).
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Now, we are ready to define the key notion—recognizability for l-valued
automata—in this paper.

Definition 3.1. Let R P A((, l). Then:
(1) The l-valued (unary) predicate pathR on T(Q, () is defined as pathR

P LT(Q,() [the set of all mappings from T(Q, () into L]: for every q0s1q1 . . .
qk21skqk P T(Q, (),

pathR(q0s1q1 . . . qk21skqk) 5
def `

k21

i50
[(qi , si11, qi11) P d]

Intuitively, the truth value of the proposition that q0s1q1 . . . qk21skqk is
a path in R is

pathR(q0s1q1 . . . qk21skqk) 5 `
k21

i50
d(qi , si11, qi11)

(2) The l-valued (unary) predicate recR on (* is defined as recR P L(*:
for every s P (*,

recR(s) 5
def

(∃c P T(Q, ())(b(c) P I ∧ e(c) P T ∧ lb(c) 5 s ∧ pathR(c))

Intuitively, the truth value of the proposition that s is recognizable by
R is

recR(s) 5 ∨{pathR(c): c P T(Q, (), b(c) P I, e(c) P T and lb(c) 5 s}

recR is defined above as an l-valued unary predicate on (*, so it may also
be seen as an l-valued subset of (*, i.e., recR: (* → L and recR(s) 5
recR(s) for all s P (*.

Definition 3.2. The l-valued (unary) predicate Rec( on L(* (the set of
all l-valued subsets of (*) is defined as Rec( P L(L(*): for each A P L(*,

Rec((A) 5
def

(∃R P A((, l))(A [ recR)

In other words, the truth value of the proposition that A is recognizable is

Rec((A) 5 ∨{A [ recR: R P A((, l)}

It should be noted that the (automaton) variable R bounded by the
existential quantifier on the right-hand side of the defining formula of Rec(

ranges over the proper class A((, l). The reader familiar with axiomatic set
theory may worry that this definition will cause a certain set-theoretic diffi-
culty, but we stay well away from anything genuinely problematic. Indeed,
for any l-valued automaton R 5 ^Q, I, T, d&, there is a bijection §: Q → .Q.
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(the cardinality of Q) 5 {0, 1, . . . , .Q. 2 1} and we can construct a new
l-valued automaton §(R) 5 ^.Q., §(I ), §(T ), §(d)&, where §(d)(m, s, n) 5
d(§21(m), s, §21(n)) for any m, n P .Q. and s P (. It is easy to see that
recR 5 rec§(R). Then in Definition 3.2 we may only require that the variable
R bounded by the existential quantifier ranges over all l-valued automata
whose state sets are subsets of v (the set of all nonnegative integers) and
the class of all l-valued automata with subsets of v as state sets is really a
set (and in fact it is a subset of (2v)3 3 øQ#vLQ3(3Q). In most situations,
however, the original version of Definition 3.2 is much more convenient and
compatible with the corresponding definition in classical automata theory.

We first give a simple connection between recognizability in classical
automata theory and the l-valued predicate Rec( introduced above.

Proposition 3.3. Let A # (* be recognizable (in classical automata
theory), B P L(*, and suppB 5 {s P (*: B(s) . 0} # A, and let

l 5 ∨{∧sPA[a } B(s)]: a P L}

Then |5
l

l → Rec((B). In particular, if A # (* is recognizable, then for
every l P L, |5

l
Rec((A[l]), where A[l] P L(* is given as

A[l](s) 5 Hl if s P A,
0 otherwise

Proof. Since A is recognizable, there must be an automaton R 5 ^Q, I,
T, E & whose behavior is A. Now, for each a P L, we construct an l-valued
automaton ℘a 5 ^Q, I, T, da& such that

da( p, s, q) 5 Ha if ( p, s, q) P E,
0 otherwise

Then it is easy to know that for all s P (*,

rec℘a(s) 5 Ha if s P A,
0 otherwise,

and B [ rec℘a 5 ∧sPA[a } B(s)]. Therefore, we have Rec((B) $

∨{B [ rec℘a: a P L} 5 l. n

We now present an example to demonstrate that the l-valued predicate
Rec( defined above is not trivial, that is, in general it does not degenerate
into a two-valued (Boolean) predicate.

Example 3.4. We paste together observables of the spin-one-half system
and obtain an orthomodular lattice L(x) % L(x), where L(x) 5 {0, p2, p+, 1}
corresponds to the outcomes of a measurement of the spin states along the
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x axis and L(x) 5 {0 5 1, p2, p+, 1 5 0} is obtained by measuring the spin
states along a different spatial direction; L(x) % L(x) may be visualized as
the following “Chinese lantern” (see [Sv98] for a more detailed description
of L(x) % L(x)):

1
p2 p+ p2 p1

0

By a routine calculation we have p2 } p+ 5 p2 } p2 5 p2 } p+ 5 0
and p2 } 1 5 p2. Thus, for each l P L(x) % L(x), l Ü p2 implies p6 }

l # p2.
Furthermore, let ( 5 {s, t} and A 5 {sntn: n P v}, and for any

t P L(x) % L(x), let At P LS* be given as follows:

At(s) 5 H1 if s P A,
t otherwise

Then it holds that |5
l

p2 } Rec((Ap2
), i.e., Rec((Ap2

) 5 p2. In fact,
we know that (* is recognizable ([E74], Example II.2.3), and with Proposition
3.3 it is easy to see that RecS(Ap2

) $ p2. Conversely, for any l-valued
automaton R 5 ^Q, I, T, d&, if .Q. 5 n, then

Ap2
[ recR # [Ap2

(sntn) } recR(sntn)]

∧ ∧k,lPv s.t. kÞl[Ap2
(sktl) } recR(sktl)]

5 recR(sntn) ∧ ∧k,lPv s.t. kÞl[p2 } recR(sktl)]

If recR(sntn) # p2, then Ap2
[ recR # p2. Now, we consider the case

of recR(sntn) Ü p2. For any c P T(Q, (), if b(c) P I, e(c) P T, and lb(c)
5 sntn, then c must be of the form c 5 p0sp1 . . . pn21spntq1 . . .
qn21tqn. Since .Q. 5 n, there are i, j such that i , j # n and pi 5 pj. We put

c+ 5 p0sp1 . . . pj21spj (

5 pi)spi11 . . . pj21spjspj11 . . . pn21spntq1 . . . qn21tqn

Then b(c+) P I, e(c+) P T, lb(c+) 5 sn1( j2i)tn, and pathR(c+) 5
pathR(c). Therefore, it holds that

recR(sn1( j2i)tn) $ ∨{pathR(c+): b(c) P I, e(c) P T and lb(c) 5 sntn}

5 ∨{pathR(c): b(c) P I, e(c) P T and lb(c) 5 sntn}

5 recR(sntn)

and recR(sn1( j2i)tn) Ü p2. Furthermore, we have
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Ap2
[ recR # p2 } recR(sn1( j2i)tn) # p2

So, for all l-valued automata R we have Ap2
[ recR # p2, and it

follows that Rec((Ap2
) 5 ∨ {A [ recR: R P A((, l)} # p2. This,

together with Rec((Ap2
) $ p2 obtained before, leads to Rec((Ap2

) 5 p2.
Similarly, we have Rec((At) 5 t for t 5 p+, p2, and p+.

Motivated by the above example, we propose the following:

Open Problem 3.5. Describe orthomodular lattices l 5 ^L, #, ∧, ∨, ',
0, 1& which satisfy {RecS(A): A P L(* 5 L, i.e., the truth values of recogniz-
ability traverse all over L, or more explicitly, for every l P L, there is
A P LS* such that Rec((A) 5 l.

It seems that this is a difficult problem. Following are three more proper-
ties of Rec(.

Proposition 3.6. For any A P L(*, if A is finite, ie., suppA is finite, then
|5
l

Rec((A).

Proof. Suppose that suppA 5 {si1 . . . simi: i 5 1, . . . , k}. Then we con-
struct an l-valued automaton RA 5 (QA , IA , TA , dA) in the following way:

(i) QA 5 øk
i51{qi0, qi1, . . . , qimi}.

(ii) IA 5 {q10, q20, . . . , qk0}
(iii) TA 5 {q1m1, q2m2, . . . , qkmk}.
(iv) We define dA(qij, si( j11), qi(j11)) 5 A(si1 . . . simi) for any 1 # i #

k and 0 # j , mi , and we define dA( p, s, q) 5 0 for other ( p, s, q) P QA 3
( 3 QA. Then it is easy to see that recRA 5 A and Rec((A) $ A [
recRA 5 1. n

For any A P L(*, we define

A ↓ l 5 {s P (*: A(s) Ü l}, A ↑ l 5 {s P (*: A(s) à l}

Proposition 3.7. Let A P L(*. Then:
(1) |5

l
m → Rec((A), where m 5 ∨{l': A ↓ l is finite}.

(2) |5
l

u → Rec((A), where u 5 ∨{l: A ↑ l is finite}.

Proof. We only prove (1); part (2) may be proven similarly.
For any l P L, if A ↓ l is finite, then we define A ⇓ l P L(* as follows:

for any s P (*,

(A ⇓ l)(s) 5 HA(s) if A(s) Ü l,
0 if A(s) # l

Clearly, A ⇓ l is finite. Then, from the proof of Proposition 2.6 we
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know that there is an l-valued automata R[l] such that recR[l] 5 A ⇓ l, i.e.,
recR[l] 5 A(s) if A(s) Ü l and recR[l] 5 0 if A(s) # l, and

Rec((A) $ A [ recR[l] 5 ∧{A(s) } recR[l]: A(s) Ü l}

∧ ∧{A(s) } 0: A(s) # l}

5 ∧{A(s) } 0: A(s) # l} $ l' n

Let A P L(*. Then the inverse A21 P L(* of A is defined as follows:

A21(s1 . . . sm) 5 A(sm . . . s1)

for any m P v and for any s1, . . . , sm P (.

Proposition 3.8. For any A P L(*, |5
l

Rec((A) } Rec((A21).

Proof. Noting that A 5 (A21)21, it suffices to show that Rec((A) #
Rec((A21). For any l-valued automaton R 5 (Q, I, T, d), we define the
inverse of R to be the l-valued automaton R21 5 (Q, T, I, d21), where d21( p,
s, q) 5 d(q, s, p) for any p, q P Q and s P (. Then it is easy to see that
recR21 5 (recR)21, and furthermore we have

Rec((A) 5 ∨{A [ recR: R P A((, l)}

5 ∨{A21 [ (recR)21: R P A((, l)}

5 ∨{A21 [ recR21: R P A((, l)}

# ∨{A21 [ recp: p P A((, l)} 5 Rec((A21) n

4. CONCLUSION

In this paper, we outlined a framework of automata theory based on
quantum logic, defined the orthomodular-valued (quantum) predicate of
recognizabilty in automata theory, and established some of its basic properties.
We tried to pursue more properties of quantum recognizability, but in doing
so we found that the proof of some even very basic properties of automata
(by the semantic analysis method) requires an essential application of the
distributivity for the lattice of truth values of the underlying logic. This
suggests the inverse problem: Which properties of automata require the
distributivity of the lattice of truth values of the underlying logic? In other
words, which properties of automata hold only in Boolean logic, but not in
quantum logic? This is a very important problem for further study. If we can
find some properties of this kind, then we know that although these properties
may have been successfully used in the development of classical computer
systems, they do not apply to quantum computers, and some new laws suitable
for quantum computers have to be found.
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